Towards deep learning with spiking neurons in energy based models with contrastive Hebbian plasticity

نویسندگان

  • Thomas Mesnard
  • Wulfram Gerstner
  • Johanni Brea
چکیده

In machine learning, error back-propagation in multi-layer neural networks (deep learning) has been impressively successful in supervised and reinforcement learning tasks. As a model for learning in the brain, however, deep learning has long been regarded as implausible, since it relies in its basic form on a non-local plasticity rule. To overcome this problem, energy-based models with local contrastive Hebbian learning were proposed and tested on a classification task with networks of rate neurons. We extended this work by implementing and testing such a model with networks of leaky integrate-and-fire neurons. Preliminary results indicate that it is possible to learn a non-linear regression task with hidden layers, spiking neurons and a local synaptic plasticity rule.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Models of Metaplasticity: A Review of Concepts

Part of hippocampal and cortical plasticity is characterized by synaptic modifications that depend on the joint activity of the pre- and post-synaptic neurons. To which extent those changes are determined by the exact timing and the average firing rates is still a matter of debate; this may vary from brain area to brain area, as well as across neuron types. However, it has been robustly observe...

متن کامل

Functional Implications of Synaptic Spike Timing Dependent Plasticity and Anti-Hebbian Membrane Potential Dependent Plasticity

Recent extensions of the Perceptron as the Tempotron and the Chronotron sug-gest that this theoretical concept is highly relevant for understanding networks ofspiking neurons in the brain. It is not known, however, how the computationalpower of the Perceptron might be accomplished by the plasticity mechanisms ofreal synapses. Here we prove that spike-timing-dependent plasticity ...

متن کامل

Event-driven contrastive divergence for spiking neuromorphic systems

Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissi...

متن کامل

Perfect Associative Learning with Spike-Timing-Dependent Plasticity

Recent extensions of the Perceptron as the Tempotron and the Chronotron suggest that this theoretical concept is highly relevant for understanding networks of spiking neurons in the brain. It is not known, however, how the computational power of the Perceptron might be accomplished by the plasticity mechanisms of real synapses. Here we prove that spike-timing-dependent plasticity having an anti...

متن کامل

Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks

Synaptic Plasticity, the foundation for learning and memory formation in the human brain, manifests in various forms. Here, we combine the standard spike timing correlation based Hebbian plasticity with a non-Hebbian synaptic decay mechanism for training a recurrent spiking neural model to generate sequences. We show that inclusion of the adaptive decay of synaptic weights with standard STDP he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.03214  شماره 

صفحات  -

تاریخ انتشار 2016